Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Environ Manage ; 351: 119892, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176380

RESUMEN

Mangrove is one of the most productive and sensitive ecosystems in the world. Due to the complexity and specificity of mangrove habitat, the development of mangrove is regulated by several factors. Species distribution models (SDMs) are effective tools to identify the potential habitats for establishing and regenerating the ecosystem. Such models usually include exclusively environmental factors. Nevertheless, recent studies have challenged this notion and highlight the importance of including biotic interactions. Both factors are necessary for a mechanistic understanding of the mangrove distribution in order to promote the protection and restoration of mangroves. Thus, we present a novel approach of combining environmental factors and interactions with salt marsh for projecting mangrove distributions at the global level and within latitudinal zones. To test the salt marsh interaction, we fit the MaxEnt model with two predicting sets: (1) environments only and (2) environments + salt marsh interaction index (SII). We found that both sets of models had good predictive ability, although the SII improved model performance slightly. Potential distribution areas of mangrove decrease with latitudes, and are controlled by biotic and abiotic factors. Temperature, precipitation and wind speed are generally critical at both global scale and ecotones along latitudes. SII is important on global scale, with a contribution of 5.9%, ranking 6th, and is particularly critical in the 10-30°S and 20-30°N zone. Interactions with salt marsh, including facilitation and competition, are shown to affect the distribution of mangroves at the zone of coastal ecotone, especially in the latitudinal range from 10° - 30°. The contribution of SII to mangrove distribution increases with latitudes due to the difference in the adaptive capacity of salt marsh plants and mangroves to environments. Totally, this study identified and quantified the effects of salt marsh on mangrove distribution by establishing the SII. The results not only facilitate to establish a more accurate mangrove distribution map, but also improve the efficiency of mangrove restoration by considering the salt marsh interaction in the mangrove management projects. In addition, the method of incorporating biotic interaction into SDMs through establish the biotic interaction index has contributed to the development of SDMs.


Asunto(s)
Avicennia , Humedales , Ecosistema , Cambio Climático , Temperatura
2.
Sci Adv ; 9(50): eadh4584, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100594

RESUMEN

Antarctic krill, crucial to the Southern Ocean ecosystem and a vital fisheries resource, is endangered by climate change. Identifying drivers of krill biomass is therefore essential for determining catch limits and designating protection zones. We present a modeling approach to pinpointing effects of sea surface temperature, ice cover, chlorophyll levels, climate indices, and intraspecific competition. Our study reveals that larval recruitment is driven by both competition among age classes and chlorophyll levels. In addition, while milder ice and temperature in spring and summer favor reproduction and early larval survival, both larvae and juveniles strongly benefit from heavier ice and colder temperatures in winter. We conclude that omitting top-down control of resources by krill is only acceptable for retrospective or single-year prognostic models that use field chlorophyll data but that incorporating intraspecific competition is essential for longer-term forecasts. Our findings can guide future krill modeling strategies, reinforcing the sustainability of this keystone species.


Asunto(s)
Ecosistema , Euphausiacea , Animales , Estudios Retrospectivos , Cubierta de Hielo , Clorofila , Larva , Regiones Antárticas
3.
R Soc Open Sci ; 10(9): 230520, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37771962

RESUMEN

Understanding the vertical migration behaviour of Antarctic krill is important for understanding spatial distribution, ecophysiology, trophic interactions and carbon fluxes of this Southern Ocean key species. In this study, we analysed an eight-month continuous dataset recorded with an ES80 echosounder on board a commercial krill fishing vessel in the southwest Atlantic sector of the Southern Ocean. Our analysis supports the existing hypothesis that krill swarms migrate into deeper waters during winter but also reveals a high degree of variability in vertical migration behaviour within seasons, even at small spatial scales. During summer, we found that behaviour associated with prolonged surface presence primarily occurred at low surface chlorophyll a concentrations whereas multiple ascent-descent cycles per day occurred when surface chlorophyll a concentrations were elevated. The high plasticity, with some krill swarms behaving differently in the same location at the same time, suggests that krill behaviour is not a purely environmentally driven process. Differences in life stage, physiology and type of predator are likely other important drivers. Finally, our study demonstrates new ways of using data from krill fishing vessels, and with the routine collection of additional information in potential future projects, they have great potential to significantly advance our understanding of krill ecology.

4.
PLoS One ; 18(7): e0286036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37506064

RESUMEN

Antarctic krill (Euphausia superba) is a key species of the Southern Ocean, impacted by climate change and human exploitation. Understanding how these changes affect the distribution and abundance of krill is crucial for generating projections of change for Southern Ocean ecosystems. Krill growth is an important indicator of habitat suitability and a series of models have been developed and used to examine krill growth potential at different spatial and temporal scales. The available models have been developed using a range of empirical and mechanistic approaches, providing alternative perspectives and comparative analyses of the key processes influencing krill growth. Here we undertake an intercomparison of a suite of the available models to understand their sensitivities to major driving variables. This illustrates that the results are strongly determined by the model structure and technical characteristics, and the data on which they were developed and validated. Our results emphasize the importance of assessing the constraints and requirements of individual krill growth models to ensure their appropriate application. The study also demonstrates the value of the development of alternative modelling approaches to identify key processes affecting the dynamics of krill. Of critical importance for modelling the growth of krill is appropriately assessing and accounting for differences in estimates of food availability resulting from alternative methods of observation. We suggest that an intercomparison approach is particularly valuable in the development and application of models for the assessment of krill growth potential at circumpolar scales and for future projections. As another result of the intercomparison, the implementations of the models used in this study are now publicly available for future use and analyses.


Asunto(s)
Ecosistema , Euphausiacea , Animales , Humanos , Cambio Climático , Alimentos Marinos , Regiones Antárticas
5.
Sci Rep ; 12(1): 17636, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271232

RESUMEN

"Blue carbon" wetland vegetation has a limited freshwater requirement. One type, mangroves, utilizes less freshwater during transpiration than adjacent terrestrial ecoregions, equating to only 43% (average) to 57% (potential) of evapotranspiration ([Formula: see text]). Here, we demonstrate that comparative consumptive water use by mangrove vegetation is as much as 2905 kL H2O ha-1 year-1 less than adjacent ecoregions with [Formula: see text]-to-[Formula: see text] ratios of 47-70%. Lower porewater salinity would, however, increase mangrove [Formula: see text]-to-[Formula: see text] ratios by affecting leaf-, tree-, and stand-level eco-physiological controls on transpiration. Restricted water use is also additive to other ecosystem services provided by mangroves, such as high carbon sequestration, coastal protection and support of biodiversity within estuarine and marine environments. Low freshwater demand enables mangroves to sustain ecological values of connected estuarine ecosystems with future reductions in freshwater while not competing with the freshwater needs of humans. Conservative water use may also be a characteristic of other emergent blue carbon wetlands.


Asunto(s)
Carbono , Ecosistema , Humanos , Secuestro de Carbono , Humedales , Agua Dulce , Agua
6.
Ann Bot ; 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802787

RESUMEN

BACKGROUND AND AIMS: Trees interconnected through functional root grafts can exchange resources, but the effect of exchange on trees remains under debate. A mechanistic understanding of resource exchange via functional root grafts will help understand their ecological implications for tree water exchange for individual trees, groups of trees and forest stands. METHODS: To identify the main patterns qualitatively describing the movement of sap between grafted trees, we reviewed the available literature on root grafting in woody plants that focus on tree allometry and resource translocation via root grafts. We then extended the BETTINA model, which simulates mangrove (Avicennia germinans) tree growth on the individual tree scale, to synthesize the available empirical information. Using allometric data from a field study in mangrove stands, we simulated potential water exchange and analysed movement patterns between grafted trees. KEY RESULTS: In the simulations, relative water exchange ranged between -9.17 and 20.3 %, and was driven by gradients of water potential, i.e. differences in tree size and water availability. Moreover, the exchange of water through root grafts alters the water balance of trees and their feedback with the soil: grafted trees that receive water from their neighbours reduce their water uptake. CONCLUSIONS: Our individual-tree modelling study is a first theoretical attempt to quantify root graft-mediated water exchange between trees. Our findings indicate that functional root grafts represent a vector of hydraulic redistribution, helping to maintain the water balance of grafted trees. This non-invasive approach can serve as a basis for designing empirical studies to better understand the role of grafted root interaction networks on a broader scale.

7.
Ann Bot ; 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35686514

RESUMEN

BACKGROUND AND AIMS: Trees interconnected through functional root grafts can exchange resources, but the effect of exchange on trees remains under debate. A mechanistic understanding of resources exchange via functional root grafts will help understand their ecological implications for tree water exchange for individual trees, groups of trees, and forest stands. METHODS: To identify the main patterns qualitatively describing the movement of sap between grafted trees, we reviewed available literature on root grafting in woody plants that focus on tree allometry and resource translocation via root grafts. We then extended the BETTINA model, which simulates mangrove (Avicennia germinans) tree growth on the individual tree scale, in order to synthesize the available empirical information. Using allometric data from a field study in mangrove stands, we simulated potential water exchange and analyzed movement patterns between grafted trees. KEY RESULTS: In the simulations, relative water exchange ranged between -9.17 and 20.3 %, and was driven by gradients of water potential, i.e. differences in tree size and water availability. Moreover, the exchange of water through root grafts alters the water balance of trees and their feedback with the soil: grafted trees that receive water from their neighbors reduce their water uptake. CONCLUSIONS: Our individual-tree modelling study is a first theoretical attempt to quantify root graft-mediated water exchange between trees. Our findings indicate that functional root grafts represent a vector of hydraulic redistribution, helping to maintain the water balance of grafted trees. This non-invasive approach can serve as a fundament for designing empirical studies to better understand the role of grafted root interaction networks on a broader scale.

8.
J Environ Manage ; 318: 115507, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35738125

RESUMEN

The United Nations Decade on Ecosystem restoration (2021¬-2030) lists mangrove ecosystems as a restoration priority. Interest in their conservation has increased recently due to their widespread degradation. Anthropogenic stressors and rehabilitation practices, specifically, have resulted in a significant decline in their species compositions. We investigated the knowledge gaps in terms of potential spatial diversity, intertidal zonation, and the historic state of mangrove forest species, and tested the role of environmental factors such as topography, as well as rehabilitation practices on diversity. Diversity and complexity indices, surface elevation, and species and structural diversities along three simplified transect lines over a broad geographical area and under various management practices were analyzed in Trat province, Thailand. Quantitative statistical zonation analyses within each transect and at the landscape-scale were performed using randomization tests and hierarchical cluster analysis. A modified "automatic regrowth monitoring algorithm (ARMA)," based on Landsat (1987-2020) and Sentinel-2 MSI (2015-2020) annual median composites was also used. Fifteen species were identified, with Ceriops tagal as the dominant species. Statistical analysis, however, failed to identify any significant zonation patterns at transect or landscape-scales at specific elevations. Rehabilitated and naturally regenerated stands showed gradual increases in their Normalized Difference Infrared Index over time. After 30 years, the rehabilitated stands made up of Rhizophoraceae monocultures were the same height as the adjacent natural stands. Depending on the location and propagule availability, the diversity and structure of regenerated stands exhibited high variation. Effluent from shrimp farms may have contributed to the disturbance of the forest stands and changes in shrimp farming practices could have facilitated their recovery. The results of the present study provide a valuable diversity baseline for the study site and secondary succession in rehabilitated and regenerated mangroves. The ARMA algorithm has also been confirmed as a valuable tool for future investigations of secondary succession and mangrove biodiversity status.


Asunto(s)
Ecosistema , Rhizophoraceae , Biodiversidad , Bosques , Humedales
9.
Sci Rep ; 11(1): 20397, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650134

RESUMEN

The rapid spread of many weeds into intensely disturbed landscapes is boosted by clonal growth and self-fertilization strategies, which conversely increases the genetic structure of populations. Here, we use empirical and modeling approaches to evaluate the spreading dynamics of Tillandsia recurvata (L.) L. populations, a common epiphytic weed with self-reproduction and clonal growth widespread in dry forests and deforested landscapes in the American continent. We introduce the TRec model, an individual-based approach to simulate the spreading of T. recurvata over time and across landscapes subjected to abrupt changes in tree density with the parameters adjusted according to the empirical genetic data based on microsatellites genotypes. Simulations with this model showed that the strong spatial genetic structure observed from empirical data in T. recurvata can be explained by a rapid increase in abundance and gene flow followed by stabilization after ca. 25 years. TRec model's results also indicate that deforestation is a turning point for the rapid increase in both individual abundance and gene flow among T. recurvata subpopulations occurring in formerly dense forests. Active reforestation can, in turn, reverse such a scenario, although with a milder intensity. The genetic-based study suggests that anthropogenic changes in landscapes may strongly affect the population dynamics of species with 'weedy' traits.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Tillandsia , Brasil , Flujo Génico/genética , Repeticiones de Microsatélite/genética , Dinámica Poblacional , Tillandsia/genética , Tillandsia/fisiología
10.
Commun Biol ; 4(1): 513, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953329

RESUMEN

The occurrence of natural root grafts, the union of roots of the same or different trees, is common and shared across tree species. However, their significance for forest ecology remains little understood. While early research suggested negative effects of root grafting with the risk of pathogen transmission, recent evidence supports the hypothesis that it is an adaptive strategy that reduces stress by facilitating resource exchange. Here, by analysing mangrove root graft networks in a non-destructive way at stand level, we show further evidence of cooperation-associated benefits of root grafting. Grafted trees were found to dominate the upper canopy of the forest, and as the probability of grafting and the frequency of grafted groups increased with a higher environmental stress, the mean number of trees within grafted groups decreased. While trees do not actively 'choose' neighbours to graft to, our findings point to the existence of underlying mechanisms that regulate 'optimal group size' selection related to resource use within cooperating networks. This work calls for further studies to better understand tree interactions (i.e. network hydraulic redistribution) and their consequences for individual tree and forest stand resilience.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Rhizophoraceae/crecimiento & desarrollo , Estrés Fisiológico , Árboles/crecimiento & desarrollo
11.
Biol Rev Camb Philos Soc ; 96(5): 1868-1888, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33978325

RESUMEN

To robustly predict the effects of disturbance and ecosystem changes on species, it is necessary to produce structurally realistic models with high predictive power and flexibility. To ensure that these models reflect the natural conditions necessary for reliable prediction, models must be informed and tested using relevant empirical observations. Pattern-oriented modelling (POM) offers a systematic framework for employing empirical patterns throughout the modelling process and has been coupled with complex systems modelling, such as in agent-based models (ABMs). However, while the production of ABMs has been rising rapidly, the explicit use of POM has not increased. Challenges with identifying patterns and an absence of specific guidelines on how to implement empirical observations may limit the accessibility of POM and lead to the production of models which lack a systematic consideration of reality. This review serves to provide guidance on how to identify and apply patterns following a POM approach in ABMs (POM-ABMs), specifically addressing: where in the ecological hierarchy can we find patterns; what kinds of patterns are useful; how should simulations and observations be compared; and when in the modelling cycle are patterns used? The guidance and examples provided herein are intended to encourage the application of POM and inspire efficient identification and implementation of patterns for both new and experienced modellers alike. Additionally, by generalising patterns found especially useful for POM-ABM development, these guidelines provide practical help for the identification of data gaps and guide the collection of observations useful for the development and verification of predictive models. Improving the accessibility and explicitness of POM could facilitate the production of robust and structurally realistic models in the ecological community, contributing to the advancement of predictive ecology at large.


Asunto(s)
Ecosistema
12.
Mar Pollut Bull ; 146: 900-907, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31426234

RESUMEN

Along the Upper Gulf of Thailand, coastal fences and breakwaters have been constructed using bamboo since 2005. Despite their potential benefits, bamboo structures disintegrate within seven years releasing floating debris which severely damages mangrove tree stems. The aim of the study was to investigate whether such stem damage resulted in the decline of Avicennia spp. stands along the Upper Gulf of Thailand. Tree health assessments were conducted to assess the probability of crown dieback in damaged and undamaged trees. Satellite-derived time-series of vegetation indices were used to detect long-term forest decline. In contrast to the unaffected landward mangroves, seaward mangroves were unable to recover from insect-induced defoliation events after the collapse of a nearby fence. Furthermore, there was a significantly higher probability that damaged trees showed signs of moderate-to-severe crown dieback. It is recommended that bamboo fences be secured by replacing individual stems before they become detached.


Asunto(s)
Avicennia/crecimiento & desarrollo , Monitoreo del Ambiente , Tailandia , Humedales
13.
mSystems ; 4(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30944871

RESUMEN

The global dissemination of plasmids encoding antibiotic resistance represents an urgent issue for human health and society. While the fitness costs for host cells associated with plasmid acquisition are expected to limit plasmid dissemination in the absence of positive selection of plasmid traits, compensatory evolution can reduce this burden. Experimental data suggest that compensatory mutations can be located on either the chromosome or the plasmid, and these are likely to have contrasting effects on plasmid dynamics. Whereas chromosomal mutations are inherited vertically through bacterial fission, plasmid mutations can be inherited both vertically and horizontally and potentially reduce the initial cost of the plasmid in new host cells. Here we show using mathematical models and simulations that the dynamics of plasmids depends critically on the genomic location of the compensatory mutation. We demonstrate that plasmid-located compensatory evolution is better at enhancing plasmid persistence, even when its effects are smaller than those provided by chromosomal compensation. Moreover, either type of compensatory evolution facilitates the survival of resistance plasmids at low drug concentrations. These insights contribute to an improved understanding of the conditions and mechanisms driving the spread and the evolution of antibiotic resistance plasmids. IMPORTANCE Understanding the evolutionary forces that maintain antibiotic resistance genes in a population, especially when antibiotics are not used, is an important problem for human health and society. The most common platform for the dissemination of antibiotic resistance genes is conjugative plasmids. Experimental studies showed that mutations located on the plasmid or the bacterial chromosome can reduce the costs plasmids impose on their hosts, resulting in antibiotic resistance plasmids being maintained even in the absence of antibiotics. While chromosomal mutations are only vertically inherited by the daughter cells, plasmid mutations are also provided to bacteria that acquire the plasmid through conjugation. Here we demonstrate how the mode of inheritance of a compensatory mutation crucially influences the ability of plasmids to spread and persist in a bacterial population.

14.
Plasmid ; 91: 96-104, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28461122

RESUMEN

Some plasmids can be transferred by conjugation to other bacterial hosts. But almost half of the plasmids are non-transmissible. These plasmid types can only be transmitted to the daughter cells of their host after bacterial fission. Previous studies suggest that non-transmissible plasmids become extinct in the absence of selection of their encoded traits, as plasmid-free bacteria are more competitive. Here, we aim to identify mechanisms that enable non-transmissible plasmids to persist, even if they are not beneficial. For this purpose, an individual-based model for plasmid population dynamics was set up and carefully tested for structural consistency and plausibility. Our results demonstrate that non-transmissible plasmids can be stably maintained in a population, even if they impose a substantial burden on their host cells growth. A prerequisite is the co-occurrence of an incompatible and costly conjugative plasmid type, which indirectly facilitates the preservation of the non-transmissible type. We suggest that this constellation might be considered as a potential mechanism maintaining plasmids and associated antibiotic resistances. It should be investigated in upcoming laboratory experiments.


Asunto(s)
Bacterias/genética , Conjugación Genética , Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal , Modelos Estadísticos , Plásmidos/química , Bacterias/metabolismo , Simulación por Computador , Aptitud Genética , Plásmidos/metabolismo , Selección Genética , Factores de Tiempo
15.
Trends Ecol Evol ; 31(12): 905-915, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27742415

RESUMEN

For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly reintroducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next we show how this reintroduction improves experimental control over community composition and structure, which helps to provide mechanistic insight on how multiple aspects of biodiversity relate to function and how biodiversity and function relate in food webs. We also highlight challenges for the proposed reintroduction and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change.


Asunto(s)
Biodiversidad , Ecosistema , Cadena Alimentaria , Investigación
16.
PLoS One ; 11(6): e0157985, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336390

RESUMEN

BACKGROUND: In the Point-Centred Quarter Method (PCQM), the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1) and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively) show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having 'random', 'aggregated' and 'regular' spatial patterns) plant populations and empirical ones. PRINCIPAL FINDINGS: PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3) show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition). If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N - 1)/(π ∑ R2) but not 12N/(π ∑ R2), of PCQM2 is 4(8N - 1)/(π ∑ R2) but not 28N/(π ∑ R2) and of PCQM3 is 4(12N - 1)/(π ∑ R2) but not 44N/(π ∑ R2) as published. SIGNIFICANCE: If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all types of plant assemblages including the repulsion process. Since in practice, the spatial pattern of a plant association remains unknown before starting a vegetation survey, for field applications the use of PCQM3 along with the corrected estimator is recommended. However, for sparse plant populations, where the use of PCQM3 may pose practical limitations, the PCQM2 or PCQM1 would be applied. During application of PCQM in the field, care should be taken to summarize the distance data based on 'the inverse summation of squared distances' but not 'the summation of inverse squared distances' as erroneously published.


Asunto(s)
Simulación por Computador , Método de Montecarlo , Plantas , Densidad de Población , Algoritmos
17.
Bioscience ; 65(2): 140-150, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26955076

RESUMEN

Ecologists urgently need a better ability to predict how environmental change affects biodiversity. We examine individual-based ecology (IBE), a research paradigm that promises better a predictive ability by using individual-based models (IBMs) to represent ecological dynamics as arising from how individuals interact with their environment and with each other. A key advantage of IBMs is that the basis for predictions-fitness maximization by individual organisms-is more general and reliable than the empirical relationships that other models depend on. Case studies illustrate the usefulness and predictive success of long-term IBE programs. The pioneering programs had three phases: conceptualization, implementation, and diversification. Continued validation of models runs throughout these phases. The breakthroughs that make IBE more productive include standards for describing and validating IBMs, improved and standardized theory for individual traits and behavior, software tools, and generalized instead of system-specific IBMs. We provide guidelines for pursuing IBE and a vision for future IBE research.

18.
Ecol Evol ; 4(11): 2247-62, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25360265

RESUMEN

Mangroves are threatened worldwide, and their loss or degradation could impact functioning of the ecosystem. Our aim was to investigate three aspects of mangroves at a global scale: (1) their constituents (2) their indispensable ecological functions, and (3) the maintenance of their constituents and functions in degraded mangroves. We focused on answering two questions: "What is a mangrove ecosystem" and "How vulnerable are mangrove ecosystems to different impacts"? We invited 106 mangrove experts globally to participate in a survey based on the Delphi technique and provide inputs on the three aspects. The outputs from the Delphi technique for the third aspect, i.e. maintenance of constituents and functions were incorporated in a modeling approach to simulate the time frame for recovery. Presented here for the first time are the consensus definition of the mangrove ecosystem and the list of mangrove plant species. In this study, experts considered even monospecific (tree) stands to be a mangrove ecosystem as long as there was adequate tidal exchange, propagule dispersal, and faunal interactions. We provide a ranking of the important ecological functions, faunal groups, and impacts on mangroves. Degradation due to development was identified as having the largest impact on mangroves globally in terms of spatial scale, intensity, and time needed for restoration. The results indicate that mangroves are ecologically unique even though they may be species poor (from the vegetation perspective). The consensus list of mangrove species and the ranking of the mangrove ecological functions could be a useful tool for restoration and management of mangroves. While there is ample literature on the destruction of mangroves due to aquaculture in the past decade, this study clearly shows that more attention must go to avoiding and mitigating mangrove loss due to coastal development (such as building of roads, ports, or harbors).

19.
PLoS One ; 8(2): e57612, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23460884

RESUMEN

Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning). Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.


Asunto(s)
Ecosistema , Modelos Biológicos , Plantas/metabolismo , Dinámica Poblacional
20.
PLoS One ; 6(9): e25330, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21966498

RESUMEN

An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics.


Asunto(s)
Luz , Árboles/crecimiento & desarrollo , Clima Tropical , Árboles/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...